Abstract Submitted for the MAR15 Meeting of The American Physical Society

Anharmonic phonons in type I clathrates KATSUMI TANIGAKI, JI-AZHEN WU, HIDEKAZU SHIMOTANI, Tohoku University — A systematic study on the anharmonicity of phonons is made for thermoelectric single crystal type-I clathrates based on their heat capacity C_p at low temperatures (T) down to 360 mK. The low-T linear terms $^{obs}\gamma T$ of C_p , including the tunneling-term of the atoms accommodated in the host cages $(\gamma_{ph}T=\alpha T)$, and the Sommerfeld itinerant-electron term $(\gamma_e T)$ are successfully separated through careful measurements of sigle crystals with various carrier concentrations. The values of the density of anharmonic potentials are deduced. The effective mass (m*) enhancement is also determined from γ_e values and the electron-phonon interaction strength (λ) can be evaluated from these values. It is shown that both the thermal conductivities $(\kappa$'s) and the electron-phonon interaction strengths $(\lambda$'s) are quantitatively in good agreement with the α parameters deduced from the present experiments. The boson peaks observed at low energy excitations are disucssued in relation to the α values.

Katsumi Tanigaki Tohoku University

Date submitted: 15 Nov 2014 Electronic form version 1.4