Abstract for an Invited Paper
for the MAR15 Meeting of
the American Physical Society

Topological Superconductivity with Magnetic Atoms
LEONID GLAZMAN, Departments of Physics and Applied Physics, Yale University, New Haven, CT 06511, USA

Chains of magnetic impurities embedded in a conventional s-wave superconductor may induce the formation of a topologically non-trivial superconducting phase. If such a phase is formed along a chain, then its ends carry Majorana fermions. We investigate this possibility theoretically by developing a tight-binding Bogoliubov-de Gennes description, starting from the Shiba bound states induced by the individual magnetic impurities. While the resulting Hamiltonian has similarities with the Kitaev model for one-dimensional spinless p-wave superconductors, there are also important differences, most notably the long-range (power-law) nature of hopping and pairing as well as the complex hopping amplitudes. We develop an analytical theory, complemented by numerical approaches, which accounts for the electron long-range pairing and hopping along the chain [1], inhomogeneous magnetic order in the chain of embedded impurities or spin-orbit coupling in the host superconductor, and the possibility of direct electron hopping between the impurity atoms. This allows us to elucidate the domain of parameters favoring the formation of a topological phase and to find the spatial structure [2] of Majorana states appearing in that phase.

This talk is based on joint work with F. von Oppen, Falko Pientka, and Yang Peng.