MAR15-2014-020113

Abstract for an Invited Paper for the MAR15 Meeting of the American Physical Society

Spectroscopic findings in $SrTiO_3$ applications: $LaAlO_3/SrTiO_3$ and $La_{0.7}Sr_{0.3}MnO_3/SrTiO_3$ heterostructures JUN-SIK LEE, SSRL, SLAC National Accelerator Laboratory

Recently, a number of transport and magnetization studies have shown signs of exotic functionalities in SrTiO₃ based heterostructures, which are totally unexpected properties with no bulk analog in the constituent materials. However, it is still early stage to understand such a functionality, which limits improving SrTiO₃ applications. For this reason, we performed spectroscopic studies on the SrTiO₃ based heterostructures, such as LaAlO₃/SrTiO₃ and La_{0.7}Sr_{0.3}MnO₃/SrTiO₃ using element-specific techniques. For example, we found direct evidence for in-plane ferromagnetic order at the interface, with Ti³⁺ character in the d_{xy} orbital of the anisotropic t_{2g} band in LaAlO₃/SrTiO₃ heterostructure. Also, we found that the unexpected metal to insulator transition in La_{0.7}Sr_{0.3}MnO₃/SrTiO₃ is due to changes in Mn 3*d*-electron confinement. These findings establish a striking example of emergent phenomena at oxide interfaces. In this presentation, I will introduce more details of spectroscopic findings on those heterostructures.