Abstract Submitted for the MAR15 Meeting of The American Physical Society

The effect of added block copolymer on oil in oil emulsions ITARU ASANO, TIMOTHY LODGE, Univ of Minn - Minneapolis — Oil-in-oil emulsions, formed by polymer A and polymer B in the presence of an organic solvent (A/solvent-in-B/solvent), are a unique class of emulsion, because both phases are composed of organic components. Here, the effects of PS-b-PEGs (PS: polystyrene and PEG: polyethylene glycol) on the stability of the oil-in-oil emulsions composed of PS/CHCl₃-in-PEG/CHCl₃ were studied by varying the molecular weight (20 $< M_n < 200 \text{ kg/mol}$) and the volume fraction (0.40 $< f_{PS} < 0.82$) of the PS-b-PEG. We found that higher M_n of PS-b-PEGs with low f_{PS} were able to stabilize the emulsions with reduced droplet size. In particular, using a large PS-b-PEG (200 kg/mol, $f_{PS} = 0.52$), the emulsion was stable for more than 2 weeks, and the droplet size decreased to the nanoscale, around 300 nm in diameter, whereas the emulsion was unstable with large droplets ($> 50 \mu m$) without the PS-b-PEG. In order to reveal the mechanism of stabilization, dye-labeled PS-b-PEGs in the emulsions were directly monitored by fluorescence microscopy.

Itaru Asano Univ of Minn - Minneapolis

Date submitted: 19 Nov 2014 Electronic form version 1.4