Magnetic properties of Ru-Ti doped Strontium hexaferrite nanocrystalline particles ABDEL ALSMADI, Kuwait University, S. MAHMOOD, University of Jordan, I. BSOUL, Al al-Bayt University — We carried out a systematic study on the effect of the substitution of Ti\(^{2+}\) and Ru\(^{4+}\) ions for Fe\(^{3+}\) ions on the magnetic properties of the strontium ferrite SrFe\(_{12-2x}\)Ru\(_x\)Ti\(_x\)O\(_{19}\) nanoparticles with \(0 \leq x \leq 1\), using vibrating sample magnetometry, electrical resistivity, and Mössbauer spectroscopy. A clear irreversibility between the zero-field-cooled and field-cooled curves was observed below room temperature and the zero-field-cooled magnetization curves displayed a broad peak at a temperature \(T_M\). These results were discussed within the framework of random particle assembly model and associated with the magnetic domain wall motion. The resistivity data show some kind of a transition from insulator to perfect insulator around \(T_M\). With Ru-Ti substitution at 5 K, the saturation magnetization showed small variations were it slightly increased up to \(x = 0.2\) and then starts to decrease for \(x\) between 0.2 and 0.5, while the coercivity decreased monotonically, recording a reduction of about 93% at \(x = 0.4\). These results were discussed in light of the single ion anisotropy model and the cationic distributions based on the results of the Mössbauer spectroscopy data.

Abdel Alsmadi
Physics department, Kuwait University, Kuwait

Date submitted: 20 Nov 2014