Ultrahigh mobility and giant magnetoresistance in the Dirac Semimetals Cd$_3$As$_2$ and Na$_3$Bi

N. PHUAN ONG, Dept of Physics, Princeton University

Dirac semimetals and Weyl semimetals are 3D analogs of graphene in which crystalline symmetry protects the nodes against gap formation. Na$_3$Bi and Cd$_3$As$_2$ were predicted to be Dirac semimetals, and recently confirmed to be so by photoemission. Several novel transport properties in a magnetic field H have been proposed for Dirac semimetals. Here we report an interesting property in Cd$_3$As$_2$ that was unpredicted, namely a remarkable protection mechanism that strongly suppresses back-scattering in zero H. In single crystals, the protection results in a very high mobility, 10^7 cm2/Vs at 5 K. Suppression of backscattering results in a transport lifetime 10^4 longer than the quantum lifetime. The lifting of this protection by H leads to very large magnetoresistance with a striking H-linear profile. I will also report transport results on Na$_3$Bi and compare them with results in Cd$_3$As$_2$. I discuss how this may relate to changes to the Fermi surface induced by H.

Coauthors: Tian Liang, Jun Xiong, Quinn Gibson, Minhao Liu, Satya Kushwaha, Jason Krizan Maz Ali, and R. J. Cava

1Research supported by the Army Research Office (W911NF-11-1-0379), MURI grant (ARO W911NF-12-1-0461) and NSF (DMR 0819860).