Glass transition originating from a rigidity transition in confluent biological tissues
DAPENG BI, Syracuse University

Cells must move through tissues in many important biological processes, including embryonic development, cancer metastasis, and wound healing. Often these tissues are dense and a cell’s motion is strongly constrained by its neighbors, leading to glassy dynamics. Although there is a density-driven glass transition in self-propelled particle (SPP) models for active matter, these cannot explain liquid-to-solid transitions in confluent tissues, where there are no gaps between cells and the packing fraction remains fixed and equal to unity. We have recently described a different type of rigidity transition that occurs in confluent tissue monolayers in the limit of vanishing cell motility, where the onset of rigidity is governed by changes to single-cell properties such as cell-cell adhesion and cortical tension. Here we alter the model to include cell motility using an equation for polarization similar to those in SPP models. We identify a glass transition line that originates at the critical point of in the rigidity transition, and compare the results to an analytic trap model. The model provides a novel signature for mechanical behavior in confluent tissues, which has been successfully tested in experimental systems. I will also demonstrate that this model provides a framework for studying the Epithelial-to-Mesenchymal transition in cancer invasion and cell sorting during embryonic development.