MAR15-2014-020272

Abstract for an Invited Paper for the MAR15 Meeting of the American Physical Society

Dual field effects in spinel ferrite field effect devices: electrostatic carrier doping and redox reactions HIDEKAZU TANAKA, Institute of Scientific and Industrial Research, Osaka University

Spinel ferrite is a good candidate as a tunable magnetic semiconductor with high $T_{\rm C}$. Here, we report the gate-induced conductance modulation of $({\rm Fe}_{3-x}{\rm Zn}_x)O_4$ solid solution to demonstrate the dual contributions of volatile and non-volatile field effects arising from electronic carrier doping and redox reactions using field effect device structure with a ferroelectric Pb(Zr,Ti)O₃ and an ionic liquid DEME-TFSI. In the Pb(Zr,Ti)O₃/(Fe_{2.5}Zn_{0.5})O₄ FET, the gate voltage dependence of channel conductance on the (Fe,Zn)₃O₄ layer shows the typical hysteresis behavior reflecting the ferroelectric polarization, indicating the static carrier modulation [1] . In contrast, in the DEME-TFSI/(Fe_{2.5}Zn_{0.5})O₄ FET, a large hysteresis observed in the drain current vs gate voltage characteristics is not accounted for solely by electrostatic doping, strongly suggesting the presence of chemical reactions[2]. In more details, the characteristic hysteresis virtually disappears for the heavily Zn substituted system, (Fe_{2.2}Zn_{0.8})O₄ with less carrier concentration [3]. These observations revealed the coexistence of two types of field effects in the Fe_{3-x}Zn_xO₄ devices, and the tuning of field-effect characteristics via composition engineering should be extremely useful for fabricating high-performance oxide field-effect devices. References; [1] Appl. Phys. Lett. 98 (2011) 102506, [2] Adv. Mater. Interfaces 1 (2014) 1300108, [3] Sci. Rep. 4 (2014) 5818.