Probing functional perovskites through scanning transmission electron microscopy and first-principles theory

STEPHEN PENNYCOOK, National University of Singapore

The aberration-corrected scanning transmission electron microscope (STEM) can provide real space imaging and spectroscopy at atomic resolution with a new level of sensitivity to structure, bonding, elemental valence and even spin state. Coupled with first-principles theory, this represents an unprecedented opportunity to probe the functionality of complex nanoscale systems. A number of examples will be shown, including the microscopic origin of the barrier to O vacancy transport across grain boundaries in Y-stabilized ZrO$_2$, the strain stabilized generation of a spin state superlattice in La$_{0.5}$Sr$_{0.5}$CoO$_{3-x}$ (LSCO) [1], the unexpected ferromagnetism in ultrathin, insulating LaCoO$_{3-x}$ (LCO) films [2] due to a vacancy superlattice (Fig. 1), and finally, the origin of the 2D electron gas at a LaAlO$_3$/SrTiO$_3$ interface is shown to be not due to vacancies but to the polar nature of the substrate [3].

Work performed in collaboration with J. Gazquez, N. Biškup, J. Salafranca, C. Cantoni, M. Varela and S. T. Pantelides.

Research sponsored by the US DOE-BES-MSED, ERC starting investigator award and Fundación Caja de Madrid.