MAR15-2014-020524

Abstract for an Invited Paper for the MAR15 Meeting of the American Physical Society

Shallow acceptor complexes in p-type ZnO^1

D.E. ASPNES², North Carolina State University

ZnO films grown on sapphire substrates by organometallic vapor phase epitaxy exhibit p-type behavior when sufficient N is properly incorporated and followed by an appropriate annealing sequence. While substitutional N on the O sublattice is a deep acceptor, shallow acceptor complexes involving N, H and V_{Zn} can provide useful 10^{18} cm⁻³ p-type films. Taking advantage of Raman, SIMS, and Hall-effect data, we establish a two-step growth scheme to form a metastable double donor complex, N_{Zn} - N_O , then convert it to a single shallow acceptor complex, V_{Zn} - N_O -H⁺ during *in situ* annealing in N₂O. The V_{Zn} - N_O -H⁺ complex accepts electrons at ionization energies of 134 meV, rendering it an efficient p-type dopant at room temperature.

¹Supported by DARPA through the Extreme Light Sources Project W31P4Q-08-1-0003 ²Collaborators: J. G. Reynolds, C. L. Reynolds, Jr., J. E. Rowe (all NC State University); A. Mohanta (AMRDEC, Huntsville,

AL); H. O. Everitt (AMRDEC, Huntsville, and Duke University)