Abstract Submitted for the MAR15 Meeting of The American Physical Society

Giant orthorhombic distortions by Cu^{2+} in ferrimagnetic spinel $\operatorname{Mn}_3 \operatorname{O}_4^1$ JAE-HO CHUNG, KEE HWAN LEE, HUN CHANG, IN YONG HWANG, Korea University, HYUN WOOK KANG, SU JAE KIM, SEONGSU LEE, Korea Atomic Energy Research Institute — $\operatorname{Mn}_3\operatorname{O}_4$ is a tetragonal (c > a) spinel that exhibits noncollinear Yafet-Kittel ferrimagnetic ordering at low temperatures. We report large orthorhombic distortions in its ferrimagnetic phase stabilized by a few percent of Cu doping. The orthorhombic strains of the ferrimagnetic phases increased linearly to the doping and reached up to $\epsilon \approx 8.2 \times 10^{-3}$ for x = 0.19, which is three times larger than the saturated value under external magnetic fields. For high doping $(x \ge 0.17)$, the distortions first appeared in the paramagnetic phases and underwent further enhancement simultaneously with the onset of the noncollinear ferrimagnetic ordering. We present the rich magnetostructural phase diagram of $\operatorname{Cu}_x \operatorname{Mn}_{3-x} \operatorname{O}_4$, and argue that the diluted t_2 orbital degeneracy of Cu^{2+} under tetrahedral crystal field breaks the global symmetry and triggers the orthorhombic instability inherent in $\operatorname{Mn}_3\operatorname{O}_4$.

¹This work was supported by the National Research Foundation of Korea through the ARCNEX (NRF-2011-0031933).

Jae-Ho Chung Korea Univ

Date submitted: 28 Nov 2014

Electronic form version 1.4