Spin Correlations in Quantum Wires

CHEN SUN, Texas A&M Univ, VALERY POKROVSKY, Texas A&M Univ, Landau Institute for Theoretical Physics — We consider theoretically spin correlations in an 1D quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of non-interacting electrons display electron-spin resonance at a frequency proportional to the RDI coupling. Interacting electrons on varying the direction of external magnetic field transit from the state of Luttinger liquid (LL) to the spin density wave (SDW) state. We show that the two-time total spin correlations of these states are significantly different. In the LL the projection of total spin to the direction of the RDI induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp ESR driven by RDI induced intrinsic field. In contrast, in the SDW state the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for experimental diagnostic of the SDW in a quantum wire.