NMR Spin-Lattice Relaxation Time T_1 of Thin Films Obtained by Magnetic Resonance Force Microscopy

SUNGMIN KWON, SEUNG-BO SAUN, SOONCHIL LEE, KAIST, SOONHO WON, Advanced Metallic Materials Division, Korea Institute of Materials Science — NMR spectrum and spin-lattice relaxation time (T_1) of CaF$_2$ thin film samples deposited on a silicon cantilever tip were obtained by magnetic resonance force microscopy (MRFM). Thickness of the thin films were 50nm and 150nm. In order to measure T_1, a cyclic adiabatic inversion method was used with periodic phase inversion. A comparison of the bulk and two thin films showed that T_1 becomes shorter as the film thickness decreases. To make the comparison as accurate as possible, all three samples were loaded onto different beams of a multi-cantilever array and measured in the same experimental conditions such as temperature and magnetic field.

Sungmin Kwon
KAIST

Date submitted: 29 Dec 2014

Electronic form version 1.4