Abstract Submitted for the MAR15 Meeting of The American Physical Society

Field-Effect Transistors Based on Few-Layered Ambipolar MoSe₂ and α -MoTe₂¹ DANIEL RHODES, Florida State University, NIHAR PRADHAN, NHMFL, SIMIN FENG, Pennsylvania State University, BYOUNG-HEE MOON, YAN XIN, NHMFL, SHARHRIAR MEMARAN, MUHANDIS SIDDIQ, LAKSHMI BHASKARAN, FSU, STEPHEN HILL, NHMFL, HUMBERTO TERRONES, Rensselaer Polytechnic Institute, MAURICIO TERRONES, PSU, AJAYAN PULICKEL, Rice University, LUIS BALICAS, NHMFL — We report a room temperature study on the electrical responses of field-effect transistors (FETs) based on few-layered MoSe₂ and MoTe₂, grown by chemical vapor transport, mechanically exfoliated onto SiO₂. MoSe₂ FETs electrically contacted with Ti display ambipolar behavior with current on/off ratios up to 10^6 for both hole and electron channels. For both channels the Hall effect indicates Hall mobilities $\mu_{\rm H}$ $\simeq 250 \text{ cm}^2/(\text{Vs})$, which are comparable to the corresponding field-effect mobilities, $\mu_{\rm FE} \sim 175 \ {\rm cm}^2/({\rm Vs})$, evaluated through two-terminal field-effect configuration. MoTe₂ field-effect transistors are observed to be hole-doped, displaying on/off ratios of $\sim 10^6$ and subthreshold swings of ~ 140 mV per decade. Our results suggest that MoSe₂ is a good candidate for single atomic layer p-n junctions and for low-power, complementary logic applications, with MoTe₂ having similar properties. However, in MoTe₂ we observe a field-effect mobility of only $\mu_{\rm FE} \sim 20 \ {\rm cm}^2/({\rm Vs})$ in a bilayer device and ~ 27 $\rm cm^2/(Vs)$ in seven layers.

¹This work was supported by the U.S. Army Research Office MURI Grant No. W911NF-11-1-0362. The NHMFL is supported by NSF through NSF-DMR-0084173 and the State of Florida.

Daniel Rhodes Florida State University

Date submitted: 30 Dec 2014

Electronic form version 1.4