Superconductivity and Magnetism from First Principles

ANDREAS LINSCHEID, ANTONIO SANNA, FRANK ESSENBERGER, E.K.U. GROSS, Max Planck Institute of Microstructure Physics — Magnetism has intriguing effects in superconductors. On the one hand static magnetic fields are known to suppress the superconducting state while dynamic spin-fluctuations are the probable candidate to explain the pairing in the Fe-based Superconductors. Achieving an ab-initio description is important. First, because this allows to compute the critical field and whether a local coexistence of magnetic and superconducting phases exist. Second, the critical temperature of a material is among the predicted properties which allows to search yet unknown superconductors on a computer. The Density Functional Theory for Superconductors (SCDFT) has been very successful in predicting T_c of phonon mediated superconductors. We include the magnetic density into SCDFT so that the electronic Kohn-Sham system now reproduces the electronic density $n(r)$, the order parameter of superconductivity $\chi(r,r')$ and the magnetic density $m(r)$. We derive the xc-potential and discuss some first results. Furthermore, we discuss an effective electron interaction mediated by spin-flip processes based on the exact spin-susceptibility. We drive a xc-functional for SCDFT that includes this effective interaction and present some results.

Andreas Linscheid
Max Planck Institute of Microstructure Physics

Date submitted: 05 Jan 2015
Electronic form version 1.4