MAR15-2015-021224

Abstract for an Invited Paper for the MAR15 Meeting of the American Physical Society

Boson Sampling for Molecular Vibronic Spectra GIAN GIACOMO GUERRESCHI, Harvard University

Quantum computers are expected to be more efficient in performing certain computations than any classical machine. Unfortunately, the technological challenges associated with building a fullscale quantum computer have not yet allowed the experimental verification of such an expectation. Recently, boson sampling has emerged as a problem that is suspected to be intractable on any classical computer, but efficiently implementable with a linear quantum optical setup. Therefore, boson sampling may o er an experimentally realizable challenge to the Extended Church-Turing thesis and this remarkable possibility motivated much of the interest around boson sampling, at least in relation to complexity-theoretic questions. In this work, we show that the successful development of a boson sampling apparatus would not only answer such inquiries, but also yield a practical tool for difficult molecular computations. Specifically, we show that a boson sampling device with a modified input state can be used to generate molecular vibronic spectra, including complicated effects such as Duschinsky rotations.