Low-frequency Raman modes as fingerprints of layer stacking configurations of transition metal dichalcogenides

LIANGBO LIANG, ALEXANDER PURETZKY, BOBBY SUMPTER, Oak Ridge National Lab, VINCENT MEUNIER, Rensselaer Polytechnic Institute, DAVID GEOHEGAN, Oak Ridge National Lab, DAVID B. GEOHEGAN TEAM, VINCENT MEUNIER TEAM — The tunable optoelectronic properties of stacked two-dimensional (2D) crystal monolayers are determined by their stacking orientation, order, and atomic registry. Atomic-resolution Z-contrast scanning transmission electron microscopy (AR-Z-STEM) can be used to determine the exact atomic registration between different layers in few-layer 2D stacks; however, fast and relatively inexpensive optical characterization techniques are essential for rapid development of the field. Using two- and three-layer MoSe2 and WSe2 crystals synthesized by chemical vapor deposition, we show that the generally unexplored low-frequency (LF) Raman modes (\(\approx 50\) cm\(^{-1}\)) that originate from interlayer vibrations can serve as fingerprints to characterize not only the number of layers, but also their stacking configurations [Puretzky and Liang et al, ACS Nano 2015, 9, 6333]. First-principles Raman calculations and group theory analysis corroborate the experimental assignments determined by AR-Z-STEM and show that the calculated LF mode fingerprints are related to the 2D crystal symmetries. Our combined experimental/theoretical work demonstrates the LF Raman modes potentially more effective than HF Raman modes to probe the layer stacking and interlayer interaction for 2D materials.

The authors acknowledge support from Eugene P. Wigner Fellowship at the Oak Ridge National Laboratory and the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility.

Liangbo Liang
Oak Ridge National Lab

Date submitted: 16 Oct 2015

Electronic form version 1.4