Creating High-Harmonic Beams with Controlled Orbital Angular Momentum

ROBERT W. BOYD, University of Ottawa

A beam of light with an angle-dependent phase $\Phi = \ell \phi$, where ϕ is the azimuthal coordinate, about the beam axis carries an orbital angular momentum (OAM) of $\ell \hbar$ per photon. Such beams have been exploited to provide superresolution in visible-light microscopy. The ability to create extreme ultraviolet or soft-x-ray beams with controllable OAM would be a critical step towards extending superresolution methods to extremely small feature size. Here we show that OAM is conserved during the process of high-harmonic generation (HHG). Experimentally, we use a fundamental beam with $\ell = 1$ and interferometrically determine that the q-th harmonic has an OAM quantum number ℓ equal to its harmonic order q. We also show theoretically how to couple an arbitrary low value of the OAM quantum number ℓ to any harmonic order q in a controlled manner. Our results open a route to microscopy on the molecular, or even submolecular, scale.