Effects on gelation transition by tuning the interaction of solvent-solute molecules in a bridging system

GUANGCUI YUAN, NIST - Natl Inst of Stds Tech, JUNHUA LUO, CHARLES C. HAN, Institute of Chemistry CAS, YUN LIU, University of Delaware — A mixed suspension of large hard spheres and small soft microgels with well-defined bridging interaction is used to construct a new short-range attractive system. Soft poly (N-isopropylacrylamide) microgels ($R = 80$ nm) are absorbable to the surface of hard polystyrene spheres ($R = 960$ nm) in aqueous solution. For a constant volume fraction of hard spheres (Φ_{MS}), gradually increasing amount of microgels (Φ_{MG}) leads to a liquid-gel-liquid transitions through bridging and steric stabilized mechanisms. Rheological measurements were performed on suspensions with Φ_{MS} ranging up to 0.35 to carefully identify the transition boundaries between liquid-like and solid-like behaviors triggered by Φ_{MG}. Meanwhile, neutron scattering technique with Baxter’s sticky hard-sphere potential fit was used to investigate the effective interparticle potential at and around the gelation boundaries. By exhibiting a set of experimental results from this explicit model system and comparing with the theoretical data, we try to clarify a debate issue about the relative position of the gel line and the liquid-gas coexistence line in the potential $U - \Phi$ plane.

1This work is supported by the Chinese National Science Foundation (Project 21474121).

Guangcui Yuan
NIST - Natl Inst of Stds Tech

Date submitted: 23 Oct 2015