Abstract Submitted for the MAR16 Meeting of The American Physical Society

Geometric Magnetic Frustration in Li₃Mg₂OsO₆ Studied with Muon Spin Relaxation¹ J. P. CARLO, Villanova University, S. DERAKHSHAN, California State University - Long Beach, J. E. GREEDAN, McMaster University — Geometric frustration manifests when the spatial arrangement of ions inhibits magnetic order. Typically associated with antiferromagnetically (AF)-correlated moments on triangular or tetrahedral lattices, frustration occurs in a variety of structures and systems, resulting in rich phase diagrams and exotic ground states. As a window to exotic physics revealed by the cancellation of normally dominant interactions, the research community has taken great interest in frustrated systems. One family of recent interest are the rock-salt ordered oxides A_5BO_6 , in which the B sites are occupied by magnetic ions comprising a network of interlocked tetrahedra, and nonmagnetic ions on the A sites control the B oxidation state through charge neutrality. Here we will discuss studies of $Li_3Mg_2OsO_6$ using muon spin relaxation (μSR) , a highly sensitive local probe of magnetism. Previous studies of this family included Li_5OsO_6 , which exhibits AF order below 50K with minimal evidence for frustration, and Li_4MgReO_6 , which exhibits glassy magnetism. $Li_3Mg_2RuO_6$, meanwhile, exhibits long-range AF, with the ordering temperature suppressed by frustration. But its isoelectronic twin, $Li_3Mg_2OsO_6$ (5d³ vs. 4d³) exhibits very different behavior, revealed by μ SR to be a glassy ground state below 12K. Understanding why such similar systems exhibit diverse ground-state behavior is key to understanding the nature of geometric magnetic frustration.

¹*Financial support from the Research Corporation for Science Advancement

J. P. Carlo Villanova University

Date submitted: 28 Oct 2015

Electronic form version 1.4