Transport and Raman signatures of electron-doped SmNiO$_3$ thin films

KOUSHIK RAMADOSS, School of Materials Engineering, Purdue University, West Lafayette, IN 47907, NIRAJAN MANDAL1, Department of Physics, Purdue University, West Lafayette, IN 47907, YOU ZHOU, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, YONG CHEN2, Department of Physics, Purdue University, West Lafayette, IN 47907, SHRIRAM Ramanathan, School of Materials Engineering, Purdue University, West Lafayette, IN 47907 — We report low temperature transport and Raman spectroscopy measurements of electron-doped SmNiO$_3$ (SNO) thin films. It has been shown that pristine SNO films can be doped with electrons using hydrogen. Our transport measurements indicate a Coulomb interaction dominated variable range hopping (VRH) for electron-doped samples whereas the pristine films show a Mott type VRH mechanism at low temperatures. The electron-doped samples display a strong localization which can be correlated with the high spin state of Ni$^{2+}$ ions. The spatial Raman map shows a remarkable shift of about 167 cm$^{-1}$ with electron doping thus serving as a spectroscopic tool to investigate hydrogen in our films. References

1Birck Nanotechnology Center, Purdue University

2School of Electrical and Computer Engineering, Purdue University

Koushik Ramadoss

School of Materials Engineering, Purdue University, West Lafayette, IN 47907

Date submitted: 29 Oct 2015