Dynamics of Chain Exchange in Block Copolymer Micelles

TIMOTHY LODGE, University of Minnesota

Block copolymer micelles are rarely at equilibrium. The primary reason is the large number of repeat units in the insoluble block, N_{core}, which makes the thermodynamic penalty for extracting a single chain (“unimer exchange”) substantial. As a consequence, the critical micelle concentration (CMC) is rarely accessed experimentally; however, in the proximity of a critical micelle temperature (CMT), equilibration is possible. We have been using time-resolved small angle neutron scattering (TR-SANS) to obtain a detailed picture of the mechanisms and time scales for chain exchange, at or near equilibrium. Our model system is poly(styrene)-block-poly(ethylene-alt-propylene) (PS-PEP), in the PEP-selective solvent squalane (C$_{30}$H$_{62}$). Equivalent micelles with either normal (hPS) or perdeuterated (dPS) cores are initially mixed in a blend of isotopically substituted squalane, designed to contrast-match a 50:50 hPS:dPS core. Samples are then annealed at a target temperature, and chain exchange is revealed quantitatively by the temporal decay in scattered intensity. The rate of exchange as function of concentration, temperature, N_{core}, N_{corona}, and chain architecture (diblock versus triblock) will be discussed.