Abstract Submitted for the MAR16 Meeting of The American Physical Society

Charge transfer effect of FeSe thin films on $SrTiO_3^1$ YUANJUN ZHOU, ANDREW MILLIS, Columbia University — Monolayer FeSe grown on $SrTiO_3$ substrate has shown a significant enhancement in the superconducting transition temperature (T_c) relative to the bulk material. Monolayers of FeSe are electron doped relative to bulk; we propose that the doping comes from work-function-mismatch driven charge transfer from $SrTiO_3$ impurity bands, modified by out-of-plane polar distortions of the $SrTiO_3$. We present a modified Schottky model combined with density functional calculations substantiating this picture for monolyaer FeSe films on Nb doped $SrTiO_3$. Physically relevant levels of Nb doping are shown to lead to doping of the FeSe compatible with observation. Adding polar fluctuations to the model leads to an electron-phonon interaction whose effect on the transition temperature is investigated.

¹YZ is supported by National Science Foundation under grant No. DMR-1120296. AJM is supported by the Department of Energy under No. DOE-ER- 046169.

Yuanjun Zhou Columbia University

Date submitted: 01 Nov 2015 Electronic form version 1.4