Anomalous Elasticity of 4He Films at the Quantum Phase Transition

KEIYA SHIRAHAMA, Keio University, DAISUKE TAKAHASHI, Ashikaga Institute of Technology, TAKAYUKI KOGURE, HIITOMI YOSHIMURA, RAMA HIGASHINO, Keio University — 4He films on solid substrates exhibit a quantum phase transition between localized (nonsuperfluid) and superfluid states by changing coverage n. We have made torsional oscillator (TO) studies for 4He films adsorbed on nanoporous glasses. A TO with localized films showed an apparent "supersolid" behavior, an increase in TO frequency f with broad peak in Q^{-1}. Combining with FEM analyses for TO’s with different designs, we conclude that the behavior results from the softening of adsorbed 4He films at high temperatures. The features in f and Q^{-1} are fitted well to a Debye-like activation with a distributed energy gap Δ, so the elasticity is accounted by thermal excitation of localized atoms to an "extended" state. As the critical coverage n_c approaches the gap decreases to zero with a powerlaw $\Delta \propto (n - n_c)^{1.2}$. Assuming that the 4He chemical potential $\mu(n)$ is located in the middle of the gap, we can estimate the elastic constant $\kappa^{-1} = n^2 \partial \mu / \partial n$. The elasticity agrees with shear moduli of 4He films obtained from the FEM analysis within factor of three. The energetics proposed from the elastic behavior naturally explains other properties of He films adsorbed on disordered substrates.

Keiya Shirahama
Department of Physics, Keio University

Date submitted: 01 Nov 2015

Electronic form version 1.4