Abstract Submitted
for the MAR16 Meeting of
The American Physical Society

Contact breaking in frictionless granular packings1 QIKAI WU, THIBAULT BERTRAND, COREY O’HERN, Yale University, MARK SHAT-TUCK, City College of the City University of New York — We numerically study the breaking of interparticle contact networks in static granular packings of frictionless bidisperse disks that are subjected to vibrations. The packings are created using an isotropic compression protocol at different values of the total potential energy per particle E_p. We first add displacements along a single vibrational mode i of the dynamical matrix to a given packing and calculate the minimum amplitude A_i of the perturbation at which the first interparticle contact breaks. We then identify the minimum amplitude A_{min} over all perturbations along each mode and study the distribution of A_{min} from an ensemble of packings at each E_p. We then study two-, three-, and multi-mode excitations and determine the dependence of A_{min} on the number of modes that are included in the perturbation.

1W. M. Keck Foundation Science and Engineering Grant

Qikai Wu
Yale Univ

Date submitted: 01 Nov 2015

Electronic form version 1.4