Multicellular Streaming in Solid Tumours
JOSEF KAS, Leipzig University

As early as 400 BCE, the Roman medical encyclopaedist Celsus recognized that solid tumours are stiffer than surrounding tissue. However, cancer cell lines are softer, and softer cells facilitate invasion. This paradox raises several questions: Does softness emerge from adaptation to mechanical and chemical cues in the external microenvironment, or are soft cells already present inside a primary solid tumour? If the latter, how can a more rigid tissue contain more soft cells? Here we show that in primary tumour samples from patients with mammary and cervix carcinomas, cells do exhibit a broad distribution of rigidities, with a higher fraction of softer and more contractile cells compared to normal tissue. Mechanical modelling based on patient data reveals that, surprisingly, tumours with a significant fraction of very soft cells can still remain rigid. Moreover, in tissues with the observed distributions of cell stiffnesses, softer cells spontaneously self-organize into lines or streams, possibly facilitating cancer metastasis.