Real-time tuning of a double quantum dot using a Josephson parametric amplifier

J. STEHLIK, Y.-Y. LIU, Department of Physics, Princeton University, C. M. QUINTANA, Department of Physics, UC Santa Barbara, C. EICHLER, T. R. HARTKE, J. R. PETTA, Department of Physics, Princeton University — Josephson parametric amplifiers (JPAs) have enabled advances in readout of quantum systems. Here we demonstrate JPA-assisted readout of a cavity-coupled double quantum dot (DQD). Utilizing a JPA we improve the signal-to-noise ratio (SNR) by a factor of 2000 compared to the situation with the parametric amplifier turned off. At an interdot charge transition we achieve a SNR of 76 (19 dB) with an integration time $\tau = 400$ ns, which is limited by the linewidth of our cavity. By measuring the SNR as a function of τ we extract an equivalent charge sensitivity of $8 \times 10^{-5} \text{e}/\sqrt{\text{Hz}}$. We develop a dual-gate-voltage rastering scheme that allows us to acquire a DQD charge stability diagram in just 20 ms. Such rapid data acquisition rates enable device tuning in live “video-mode,” where the results of parameter changes are immediately displayed. Live tuning allows the DQD confinement potential to be rapidly tuned, a capability that will become increasingly important as semiconductor spin qubits are scaled to a larger number of dots.

Research is supported by the Packard Foundation, ARO Grant No. W911NF-15-1-0149, DARPA QuEST Grant No. HR0011-09-1-0007, and the NSF (Grants No. DMR-1409556 and DMR-1420541).
