Abstract Submitted for the MAR16 Meeting of The American Physical Society

Characterization of accumulation-mode Si/SiGe triple quantum dots¹ T. M. HAZARD, D. M. ZAJAC, X. MI, S. S. ZHANG, J. R. PETTA, Department of Physics, Princeton University — The transition from quantum dots fabricated from doped Si/SiGe quantum wells to undoped accumulation-mode structures has greatly improved the performance of few-electron quantum dots. Our accumulation-mode devices² are reconfigurable and allow for operation as single, double, or triple quantum dots. In these devices, we measure typical charging energies $E_c = 5.7$ meV, orbital excited state energies as large as $E_o = 2.9$ meV, and valley splittings of up to $E_v = 80 \ \mu eV$. With the device configured as a triple quantum dot, we easily reach the (1,1,1) charge configuration. The gate architecture allows the interdot tunnel coupling to be tuned over a wide range, which is important for operation as an exchange-only spin qubit.³

¹Research sponsored by ARO Grant No. W911NF-15-1-0149.
²D. M. Zajac *et al.*, Appl. Phys. Lett. **106**, 223507 (2015).
³J. Medford *et al.*, Phys. Rev. Lett. **111**, 050501 (2013).

Thomas Hazard Department of Physics, Princeton University

Date submitted: 02 Nov 2015

Electronic form version 1.4