Abstract Submitted for the MAR16 Meeting of The American Physical Society

Time Dependence of the freezing temperature for thin film spin glasses¹ RAYMOND ORBACH, The University of Texas at Austin — There have been many measurements of the dependence of the "freezing temperature", T_f , on the thickness \mathcal{L} of thin film spin glasses. T_f decreases with decreasing \mathcal{L} , but never vanishes. This contribution suggests that the dependence of T_f on \mathcal{L} is a time dependent relationship. Because the lower critical dimension of a spin glass, $d_{\ell} \approx 2.5$, when the spin glass correlation length $\xi(t,T)$ grows to \mathcal{L} , the spin glass dimensionality crosses over from d=3 to d=2. What remains are spin glass correlations for length scales $\leq \mathcal{L}$. The time dependence of the magnetization dynamics are then activated, with activation energy equal to a largest barrier $\Delta_{max}(\mathcal{L})$, and an associated activation time τ . For measurements at time scales such that $\xi(t,T) < \mathcal{L}$, the effective dimension d = 3, and the characteristic cusp and knee of a spin glass is observed. For experimental time scales greater than τ , with $\xi(t,T) \approx \mathcal{L}$, the zero-field cooled magnetization has grown to the field-cooled value of the magnetization, leading to the identification of T_f . Quantitative agreement with experiment is exhibited.

¹Supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award DE-SC0013599

> Raymond Orbach The University of Texas at Austin

Date submitted: 02 Nov 2015

Electronic form version 1.4