Abstract Submitted
for the MAR16 Meeting of
The American Physical Society

Processing oscillatory signals by incoherent feedforward loops
CAROLYN ZHANG, FEILUN WU, RYAN TSOI, IGOR SHATS, LINGCHONG YOU, Duke University — From the timing of amoeba development to the maintenance of stem cell pluripotency, many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression. While networks underlying this signal decoding are diverse, many are built around a common motif, the incoherent feedforward loop (IFFL), where an input simultaneously activates an output and an inhibitor of the output. With appropriate parameters, this motif can generate temporal adaptation, where the system is desensitized to a sustained input. This property serves as the foundation for distinguishing signals with varying temporal profiles. Here, we use quantitative modeling to examine another property of IFFLs, the ability to process oscillatory signals. Our results indicate that the system’s ability to translate pulsatile dynamics is limited by two constraints. The kinetics of IFFL components dictate the input range for which the network can decode pulsatile dynamics. In addition, a match between the network parameters and signal characteristics is required for optimal “counting.” We elucidate one potential mechanism by which information processing occurs in natural networks with implications in the design of synthetic gene circuits for this purpose.

This work was partially supported by the National Science Foundation Graduate Research Fellowship (CZ).

Carolyn Zhang
Duke University

Date submitted: 02 Nov 2015
Electronic form version 1.4