Microscopic theory of superconductivity near a Lifshitz transition

VIVEK MISHRA, THOMAS MAIER, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA., DOUG SCALAPINO, Department of Physics, University of California, Santa Barbara, CA-93106, USA. — Observation of robust superconductivity in some of the iron based superconductors in the vicinity of a Lifshitz point has attracted many theoretical and experimental studies. The majority of these studies have been phenomenological. Here we discuss a microscopic treatment of the pairing mechanism for a bilayer Hubbard model, which goes through a Lifshitz transition. We study pairing driven by spin-fluctuations by solving the strong coupling Eliashberg equations and make a systematic comparison of the results with non-perturbative dynamical cluster quantum Monte Carlo calculations. Our findings are quite general and we will discuss their application to some of the iron based superconductors.

1Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

Vivek Mishra
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA.

Date submitted: 02 Nov 2015

Electronic form version 1.4