Multipolar effects in Eu2Ir2O7 YILIN WANG, XI DAI, Institute of Physics, Chinese Academy of Sci (CAS) — We use the density functional theory plus the rotationally invariant Hartree-Fock mean-field method to study the magnetic properties of the pyrochlore iridate material Eu2Ir2O7 (5d5), where the crystal field splitting ∆, spin-orbit coupling (SOC) λ and Coulomb interaction U of Ir atoms are all playing significant roles. We have constructed a t2g Wannier tight-binding Hamiltonian and calculated the U-λ phase diagram, from which we find a very stable all-in/all-out antiferromagnetic ground state for moderate SOC (0.2-0.5 eV). In this magnetic state, except for the dipole moments, we also find considerable multipolar moments (octupole) and large non-linear magnetic susceptibility. With strong enough SOC, the system reduces to a j_{eff} = 1/2 single band Hubbard model, and the ground state changes to another antiferromagnetic configuration without multipolar moments. Our results indicate that the coexisting multipolar order is crucial to stabilize the all-in/all-out state and contributes a lot to the non-linear magnetic susceptibility.

Yilin Wang
Chinese Academy of Sci (CAS)

Date submitted: 03 Nov 2015