Abstract Submitted for the MAR16 Meeting of The American Physical Society

Dynamic scaling invariance at low temperatures VLADIMIR UDODOV, Katanov Khakas State University, KATANOV KHAKAS STATE UNI-VERSITY TEAM — Using thermodynamic arguments we prove that the conventional consequences of the dynamic scale hypothesis change their character in the limit as the critical temperature T_c approaches zero. In particularly, for liquid helium-4, the critical exponent α associated with the heat capacity ($\alpha < 0$) and other exponents related by the following new relation

$$\nu(z-1) = (1+S_I - \alpha)/6$$
, $T_C = T_\lambda \ge 0$, (1)

$$S_I = \left(\frac{T_C}{T}\right)^n, \quad T \ge T_C \quad , \tag{2}$$

where n is a positive constant [1] and z is the dynamic critical exponent, ν – the critical exponent of the correlation length. It is important that now the exponent z depends on T and T_{λ} . If $T_{\lambda} = 0$ and T > 0, then the S_I -function [1] is zero and Eq. (??) becomes

$$\nu(z-1) = (1-\alpha)/6$$
, $T_C = 0$, $(T > 0, \alpha < 0)$. (3)

Eq. (??) can be applied, for example, to a mixture of liquid He^3 and He^4 . The results are valid for multi-component order parameter. 1. Udodov V. Violating of the Essam-Fisher and Rushbrooke Relationships at Low Temperatures//World Journal of Condensed Matter Physics. — 2015. — .5. — 2. — . 55-59. http://dx.doi.org/10.4236/wjcmp.2015.52008.

> Vladimir Udodov Katanov Khakas State University

Date submitted: 03 Nov 2015

Electronic form version 1.4