Spin wave damping in colossal magnetoresistive La$_{0.7}$Ca$_{0.3}$MnO$_3$

JOEL HELTON, SUSUMU JONES, US Naval Academy, MATTHEW STONE, Oak Ridge National Laboratory, DMITRY SHULYATEV, National University of Science and Technology “MISiS”, DANIEL PARSHALL, JEFFREY LYNN, NIST Center for Neutron Research — The hole-doped perovskite La$_{0.7}$Ca$_{0.3}$MnO$_3$ is best known for the colossal magnetoresistance displayed at a combined ferromagnetic and metal-insulator phase transition (T_c=257 K). Previous studies have reported that the spin wave excitations in the ferromagnetic phase become anomalously damped near the Brillouin zone boundary, though a later work suggested that this was a measurement artifact due to an optical phonon branch. We have used the ARCS time-of-flight neutron spectrometer to investigate the spin wave excitations of La$_{0.7}$Ca$_{0.3}$MnO$_3$ at T=100 K and find a damping for spin waves at energies exceeding 20 meV that cannot be explained solely by proximity to the phonon branch. With additional measurements using the BT7 triple-axis neutron spectrometer, the spin wave damping is explored as a function of reduced wavevector, excitation energy, and temperature.

Joel Helton
US Naval Academy

Date submitted: 03 Nov 2015

Electronic form version 1.4