Abelian and non-Abelian states in $\nu = 2/3$ bilayer fractional quantum Hall systems

MICHAEL PETERSON, Cal State Univ- Long Beach, YANGLI WU, Joint Quantum Institute, University of Maryland, MENG CHENG, MAISSAM BARKESHILI, Microsoft, ZHENGHAN WANG, Microsoft, University of California Santa Barbara — There are several possible theoretically allowed non-Abelian fractional quantum Hall (FQH) states that could potentially be realized in one- and two-component FQH systems at total filling fraction $\nu = n + 2/3$, for integer n. Some of these states even possess quasiparticles with non-Abelian statistics that are powerful enough for universal topological quantum computation, and are thus of particular interest. Here we initiate a systematic numerical study, using both exact diagonalization and variational Monte Carlo, to investigate the phase diagram of FQH systems at total filling fraction $\nu = n + 2/3$, including in particular the possibility of the non-Abelian Z_4 parafermion state. In $\nu = 2/3$ bilayers we determine the phase diagram as a function of interlayer tunneling and repulsion, finding only three competing Abelian states, without the Z_4 state. On the other hand, in single-component systems at $\nu = 8/3$, we find that the Z_4 parafermion state has significantly higher overlap with the exact ground state than the Laughlin state, together with a larger gap, suggesting that the experimentally observed $\nu = 8/3$ state may be non-Abelian. Our results from the two complementary numerical techniques agree well with each other qualitatively.

We acknowledge the Office of Research and Sponsored Programs at California State University Long Beach and Microsoft Station Q.