Tunneling spectroscopy in engineered SrTiO$_3$ heterostructures

ADRIAN SWARTZ, HISASHI INOUE, TYLER MERZ, Stanford University, YASUYUKI HIKITA, SLAC National Accelerator Laboratory, HAROLD HWANG, Stanford University and SLAC National Accelerator Laboratory — Despite decades of intense research on the topic, superconductivity in the dilute high-k semiconductor SrTiO$_3$ (STO) has posed a long-standing problem. In light of the recent reports of unconventional 2D superconductivity in STO-based heterostructures, this problem deserves renewed attention in the bulk limit. Tunneling spectroscopy, which directly measures the electronic density of states, is a powerful tool to investigate the superconducting ground state as well as the relevant electron-phonon couplings. A limiting obstacle for employing this technique is the long depletion lengths formed when semiconducting SrTiO$_3$ is contacted with a metal in Schottky junctions, which obstructs access to the intrinsic bulk electronic properties. Here, using band alignment engineered planar tunneling junctions to minimize these long depletion lengths, we experimentally re-examine canonical tunneling experiments in Nb-doped STO. We discuss our results on the extraction of the electron-phonon coupling in SrTiO$_3$ and its relevance to the superconducting condensate.

Adrian Swartz
Stanford University

Date submitted: 03 Nov 2015

Electronic form version 1.4