Mn Doping Effects on the Electronic Band Structure of PbS Quantum Dot Thin Films: A Scanning Tunneling Microscopy Analysis

ANDREW J. YOST, GAURAB RIMAL, JINKE TANG, TEYU CHIEN, University of Wyoming — A thorough understanding of the phenomena associated with doping of transition metals in semiconductors is important for the development of semiconducting electronic technologies such as semiconducting quantum dot sensitized solar cells (QDSSC). Manganese doping is of particular interest in a PbS QD as it is potentially capable of increasing overall QDSSC performance [1]. Here we present scanning tunneling microscopy and spectroscopy studies about the effects of Manganese doping on the energy band structures of PbS semiconducting QD thin films, grown using pulsed laser deposition. As a result of Manganese doping in the PbS QD thin films, a widening of the electronic band gap was observed, which is responsible for the observed increase in resistivity. Furthermore, a loss of long range periodicity observed by XRD, upon incorporation of Manganese, indicates that the Manganese dopants also induce a large amount of grain boundaries. [1] Qilin Dai et al., APL 104,183901(2014).

1This work was supported by the following: U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, DEFG02-10ER46728 and the National Science Foundation Grant 0948027