Of Bulk and Boundaries: Generalized Transfer Matrices for Tight-Binding Models1 VATSAL DWIVEDI, VICTOR CHUA, Univ of Illinois - Urbana — We construct a generalized transfer matrix corresponding to non-interacting tight-binding lattice models, which can subsequently be used to compute the bulk bands as well as the edge states. Crucially, our formalism works even in cases where the hopping matrix is non-invertible. Following Hatsugai [PRL 71, 3697 (1993)], we explicitly construct the energy Riemann surfaces associated with the band structure for a specific class of systems which includes systems like Chern insulator, Dirac semimetal and graphene. The edge states can then be interpreted as non-contractible loops, with the winding number equal to the bulk Chern number. For these systems, the transfer matrix is symplectic, and hence we also describe the windings associated with the edge states on $Sp(2, R)$ and interpret the corresponding winding number as a Maslov index. This work is discussed in arXiv preprint arXiv:1510.04279.

1National Science Foundation Grant NSF DMR 13-06011 and Gordon and Betty Moore Foundation’s EPiQS Initiative Grant GBMF4305

Vatsal Dwivedi
Univ of Illinois - Urbana

Date submitted: 03 Nov 2015

Electronic form version 1.4