Quantum anomalous Hall effect with field-tunable Chern number near Z_2 topological critical point1 LE QUY DUONG, HSIN LIN, WEI-FENG TSAI, YUAN PING FENG, National University of Singapore — We study the practicability of achieving quantum anomalous Hall (QAH) effect with field-tunable Chern number in a magnetically doped, topologically trivial insulating thin film. Specifically in a candidate material, TlBi(S$_{1-\delta}$Se$_\delta$)$_2$, we demonstrate that the QAH phases with different Chern numbers can be achieved by means of tuning the exchange field strength or the sample thickness near the Z_2 topological critical point. Our physics scenario successfully reduces the necessary exchange coupling strength for a targeted Chern number. This QAH mechanism differs from the traditional QAH picture with a magnetic topological insulating thin film, where the “surface” states must involve and sometimes complicate the realization issue. Furthermore, we find that a given Chern number can also be tuned by a perpendicular electric field, which naturally occurs when a substrate is present.1 High-Chern number QAH phase obtained from magnetically doped topological crystalline insulator thin films will also be discussed.

1Support by the Singapore National Research Foundation under NRF Award No. NRF-NRFF2013-03 is acknowledged.