Abstract Submitted for the MAR16 Meeting of The American Physical Society

In Situ Thin Film Growth and Characterization of Topological Dirac Semimetal Na₃Bi¹ JACK HELLERSTEDT, MARK EDMONDS, CHANG LIU, Monash Centre for Atomically Thin Materials, NAVNEETH RAMAKR-ISHNAN, NUS Singapore, SHAFFIQUE ADAM, Yale-NUS College, MICHAEL FUHRER, Monash Centre for Atomically Thin Materials — The alkali pnictide Na₃Bi is a three-dimensional Dirac semimetal possessing Dirac-like dispersions in k_x , k_y and k_z , that has attracted recent interest as a condensed matter system for realizing the chiral anomaly [1]. The high reactivity of sodium makes conventional synthesis and characterization extremely difficult: we circumvent this issue by combining thin film growth with low temperature STM and magnetotransport in one comprehensive UHV system. We have successfully grown Na₃Bi on α -Al₂O₃ (0001) substrates, achieving low temperature mobilities in excess of $3,500 \text{ cm}^2/\text{Vs}$ and carrier densities as low as 5×10^{12} cm⁻². Perpendicular magnetoresistance up to 1T shows quadratic behavior with weak anti-localization at low field. Quantitative analysis of this data suggests that our samples are in a charge inhomogeneous regime reminiscent of charge puddling in graphene [2]. [1] Xiong et. al Science (2015) doi:10.1126/science.aac6089 [2] Ramakrishnan et. al arXiv:1501.03815 (2015)

¹JH, MTE and MSF are supported by MSFs ARC Laureate Fellowship (FL120100038)

Jack Hellerstedt Monash Centre for Atomically Thin Materials

Date submitted: 04 Nov 2015

Electronic form version 1.4