Elastic and inelastic scattering in SrTiO$_3$–δ

KAMRAN BEHNIA, XIAO LIN, BENOIT FAUQU, ESPCI

— Scattering among electrons generates a distinct contribution to electrical resistivity that follows a quadratic temperature dependence. We show that the prefactor of this T^2 resistivity can be tuned by four orders of magnitude in metallic SrTiO$_3$ by tuning the concentration of the carriers and consequently, the Fermi energy. The T^2 behavior persists in the single-band dilute limit despite the absence of two known mechanisms for T^2 behavior, distinct electron reservoirs and Umklapp processes. The ultimate origin of the small residual resistivity is the long Bohr radius, which, in a shallow Fermi sea caused by a random distribution of dopants, sets the zero-temperature mobility.

Kamran Behnia
ESPCI

Date submitted: 05 Nov 2015

Electronic form version 1.4