Quantum Key Distribution based on Silicon Integrated Photonic Devices

DARIUS BUNANDAR, NICHOLAS HARRIS, ZHESHEN ZHANG, Massachusetts Inst of Tech-MIT, RAN DING, TOM BAEHR-JONES, MICHAEL HOCHBERG, Coriant Advanced Technology Group, JEFFREY SHAPIRO, FRANCO WONG, DIRK ENGLUND, Massachusetts Inst of Tech-MIT — We present a compact quantum key distribution (QKD) transmitter near a 1550-nm wavelength using microring modulators implemented on a silicon-on-insulator photonics platform. The transmitter generates time-bin based qubits with a temporal FWHM of 940 ps and an extinction ratio beyond 16 dB. We prove the feasibility of the transmitter with a coherent one-way QKD protocol, where the bit string is encoded in the arrival time of the time-bin qubits and possible eavesdropping is monitored via the intereference visibility of neighboring time-bin qubits. The receiver consists of an asymmetric beamsplitter, which provides a random choice of measurement basis, followed by either a superconducting nanowire single-photon detector (SNSPD) or an unbalanced Michelson interferometer with SNSPDs. This experiment demonstrates the feasibility of high-speed QKD based on CMOS-compatible silicon photonics integrated circuits.