Abstract Submitted for the MAR16 Meeting of The American Physical Society

The electronic structure of the Mott insulator VO₂: the strongly correlated metal state is screened by impurity band. HYUN-TAK KIM, MIT Center in ETRI — A Mott insulator VO₂ (3d¹) has a direct gap ($\Delta_{direct} \propto V_{direct}$) of 0.6 eV and an indirect gap of $\Delta_{act} \propto V_{direct} \approx 0.15 \ eV$ coming from impurity indirect band. At T_c, $\Delta_{direct} = \Delta_{act} = O$ is satisfied and the insulator-to-metal transition (IMT) occurs. The metallic carriers near core region can be trapped when a critical onsite Coulomb U_c exists. Then, a potential energy is defined as

$$V_g = (V_{direct} + U_c) + V_{indirect}$$
$$= -(2/3)E_F(1 + e(N_{tot}/n_{tot})(1 - \exp(-\Delta_{act}/k_BT))) + U_c, \qquad (1)$$

where $V_{direct} = -(2/3)E_F$ is the screened Coulomb pseudopotential at K = 0. $\Delta \rho = N_{tot}/n_{tot} \approx 0.018\%$ [1] is defined as the critical doping quantity, where n_{tot} is the carrier density in the direct band and N_{tot} is the carrier density in the impurity band. In $U_c < (2/3)E_F$ case, it sustains the insulator state. However, when both $U_c > (2/3)E_F$ and $\Delta_{act} = 0$ by excitation are satisfied, the IMT occurs in $V_g \ge$ 0. This indicates that the excitation ($\Delta_{act} = 0$) breaks the Coulomb equilibrium ($V_g < 0$ and insulator sustaining U_c) in Eq. (1); the Coulomb energy changes from U_c to a $U < U_c$. The IMT can be switched by the doping (excitation; $\Delta_{act} = 0$) and the de-doping (de-excitation; $\Delta_{act} = 0.15 \ eV$) of $\Delta \rho = N_{tot}/n_{tot}$ to the conduction band, by applying external parameters such as heat, pressure, doping *etc*. The direct band gap (semiconductor gap) in the Mott insulator smaller than that of dielectric insulators can be explained by U_c .[1] NewJ.Phys.6(2004)52.

> Hyun-Tak Kim MIT Center in ETRI

Date submitted: 04 Nov 2015

Electronic form version 1.4