Photodoping of Effects in Underdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ Revealed by Time and Angle Resolved Photoemission Spectroscopy1

JONATHAN RAMEAU, Brookhaven Natl Lab, S. FREUTEL, I. AVIGO, M. LIGGES, L. RETTIG2, P. ZHOU, University of Duisburg-Essen, J. SCHNEELOCH, R. ZHONG, Z. XU, GENDA GU, PETER JOHNSON, Brookhaven Natl Lab, UWE BOVENSIEPEN, University of Duisburg-Essen — While in the last several years great strides have been made in the use of ultrafast optical excitation to induce non-equilibrium effects in the superconducting state of cuprate high T_c superconductors, less attention has been paid to what such pump-probe experiments might reveal about the equilibrium properties of these materials, particularly in their normal states. Recently we have investigated the non-equilibrium properties of the normal state of optimally doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ ($T_c = 91$ K) using time and angle resolved photoelectron spectroscopy (tr-ARPES). This effort revealed a pump-induced modification of the nodal mass renormalization at 70 meV as well as a longer-lived photodoping effect. Building on this work, we will present further findings related to the photodoping effect as it is manifested in the normal state of underdoped ($T_c = 50$ K) Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$.

1Center for Emergent Superconductivity, a DOE EFRC
2Current Affiliation at Paul Scherrer Institute

Jonathan Rameau
Brookhaven Natl Lab

Date submitted: 04 Nov 2015

Electronic form version 1.4