Theoretical Study of All-Electrical Quantum Wire Valley Filters in Bilayer Graphene

YU-SHU WU, National Tsing-Hua University, Taiwan, NING-YUAN LUE, YEN-CHUN CHEN, NTHU, Taiwan, JIA-HUEI JIANG, NTHU, Taiwan, MEI-YIN CHOU, AS, Taiwan — Graphene electrons carry valley pseudospin, due to the double valley degeneracy in graphene band structure. In gapped graphene, the pseudospin is coupled to an in-plane electric field, through the mechanism of valley-orbit interaction (VOI). Based on the VOI, a family of electrically-controlled valleytronic devices have been proposed. Here, we report the theoretical study of a recently proposed valley filter consisting of a Q1D channel in bilayer graphene defined and controlled by electrical gates. We discuss two types of calculations — those of energy subband structure in the channel and electron transmission through a valley valve consisting of two proposed filters. For the former, we have developed a tight binding formulation in the continuum limit. For the latter, we employ the recursive Green’s function method. Results from the calculations will be presented.

References

Yu-Shu Wu
National Tsing-Hua University

Date submitted: 05 Nov 2015

Electronic form version 1.4