Perpendicular Orientation of Nanodomains on Versatile Substrates through Self-Neutralization Induced by Star-Shaped Block Copolymers

MOOSEONG KIM, SANGSHIN JANG, KYU SEONG LEE, HONG CHUL MOON, JONGHEON KWAK, JICHEOL PARK, GUMHYE JEON, JIN KON KIM, POSTECH — A novel self-neutralization concept is introduced by designing molecular architecture of a block copolymer. Star-shaped 18 arm poly(methyl methacrylate)-block-polystyrene copolymers ((PMMA-b-PS)$_{18}$) exhibiting lamellar and PMMA cylindrical nanodomains are synthesized. When a thin film of (PMMA-b-PS)$_{18}$ is spin-coated on a substrate, vertically aligned lamellar and cylindrical nanodomains are obtained without any pre- or post-treatment, although thermal annealing for a short time (less than 30 min) is required to improve the spatial array of vertically aligned nanodomains. This result is attributed to the star-shaped molecular architecture that overcomes the difference in the surface affinity between PS and PMMA chains. Moreover, vertical orientations are observed on versatile substrates, for instance, semiconductor (Si, SiO$_x$), metal (Au), PS or PMMA-brushed substrate, and a flexible polymer sheet of polyethylene naphthalate.