Abstract Submitted for the MAR16 Meeting of The American Physical Society

Gyrotropic magnetic effects in chiral metals IVO SOUZA, Universidad del Pais Vasco, San Sebastian, SHUDAN ZHONG, University of California, Berkeley, DAVID VANDERBILT, Rutgers University, JOEL MOORE, University of California, Berkeley — We consider two conjugate transport effects occuring in chiral metals as the low-frequency limit of natural optical activity (optical gyrotropy). One occurs in the clean limit where ω is small compared to the minimum energy for interband transitions, but large compared to the scattering rate $1/\tau$. It consists of a dissipationless current induced by a magnetic field, $J_i = \alpha'_{ij}B_j$, and is different from the chiral magnetic effect requiring a static **B** and an electric-field pulse **E** \parallel **B**. In the inverse effect a magnetization is generated by a dissipative current, $M_i = (1/\omega)\alpha''_{ji}E_j$, with **E** the field driving the current and $\omega \ll 1/\tau$, as discussed by Yoda *et al.*, Sci. Rep. **5**, 12024 (2015). The low-frequency gyrotropic responses α' and α'' in the clean and dirty limits can be combined into a complex tensor $\alpha = \alpha' + i\alpha''$ given by the Fermi-surface integral of the total (orbital plus spin) intrinsic magnetic moment of the Bloch electrons, with a prefactor proportional to $1 - i\omega\tau$. Without spin-orbit coupling, only the orbital moment contributes.

Ivo Souza Universidad del País Vasco, San Sebastian

Date submitted: 05 Nov 2015

Electronic form version 1.4