Abstract Submitted for the MAR16 Meeting of The American Physical Society

⁴He adsorption on a ³He-plated graphite surface YONGKYUNG KWON, JEONGHWAN AHN, Konkuk University — Path-integral Monte Carlo (PIMC) calculations have been performed for ⁴He atoms on top of the ³He first layer on graphite. For this we ignore Fermi statistics of solidified ³He adatoms while Bose statistics of ⁴He atoms are fully incorporated. We first find that the first ³He layer exhibits a 7/12 commensurate solid structure at the areal density of 0.111 $Å^{-2}$, which turns out to be identical to the experimental value for its completion density. Additional adsorption of ⁴He atoms above the complete first ³He layer is found to sustain the underlying ³He commensurate structure and the second ⁴He layer is observed to display the 4/7 commensurate structure with respect to the first-layer commensurate ³He solid at the areal density of 0.0636 Å⁻². Furthermore, it is found that the 4/7 commensurate structure of the second-layer ⁴He atoms can be formed above a mixture of the first-layer ³He and ⁴He atoms on graphite. These PIMC results suggest that the 4/7 commensurate structure of the second-layer ⁴He atoms on graphite, whose existence on top of the first ⁴He layer has long been in dispute, may be realized on a ³He-plated graphite surface. This could lead to a new approach to observe two-dimensional supersolidity in ⁴He on graphite.

> Yongkyung Kwon Konkuk University

Date submitted: 05 Nov 2015

Electronic form version 1.4