Tunneling and Speedup in Permutation-Invariant Quantum Optimization Problem
TAMEEM ALBASH, Univ of Southern California

Tunneling is often claimed to be the key mechanism underlying possible speedups in quantum optimization via the quantum adiabatic algorithm. Restricting ourselves to qubit-permutation invariant problems, we show that tunneling in these problems can be understood using the semi-classical potential derived from the spin-coherent path integral formalism. Using this, we show that the class of problems that fall under Reichardt’s bound (1), i.e., have a constant gap and hence can be efficiently solved using the quantum adiabatic algorithm, do not exhibit tunneling in the large system-size limit. We proceed to construct problems that do not fall under Reichardt’s bound but numerically have a constant gap and do exhibit tunneling. However, perhaps counter-intuitively, tunneling does not provide the most efficient mechanism for finding the solution to these problems. Instead, an evolution involving a sequence of diabatic transitions through many avoided level-crossings, involving no tunneling, is optimal and outperforms tunneling in the adiabatic regime. In yet another twist, we show that in this case, classical spin-vector dynamics is as efficient as the diabatic quantum evolution (2).