Abstract Submitted for the MAR16 Meeting of The American Physical Society

Computational modeling of the structure and the ionic conductivity of the solid electrolyte materials Li_3AsS_4 and its Ge substitutions¹ AHMAD AL-QAWASMEH, N. A. W. HOLZWARTH, Wake Forest University — Oak Ridge National Laboratory (G. Sahu et al.)² reported that the substitution of Ge into Li_3AsS_4 leads to the composition $Li_{3.334}Ge_{0.334}As_{0.666}S_4$ with impressively high ionic conductivity. We use ab initio calculations to examine the structural relationships and the ionic conductivity mechanisms for pure Li_3AsS_4 , $Li_{3.334}Ge_{0.334}As_{0.666}S_4$, and other compositions of these electrolytes.

 $^1 \rm Supported$ by NSF grant DMR-1105485 and 1507942 and WFU's DEAC cluster. $^2 \rm J.$ Matter. Chem. A. 2014, ${\bf 2},$ 10396

Ahmad Al-Qawasmeh wake forest niversity

Date submitted: 05 Nov 2015

Electronic form version 1.4